亲爱的朋友,和您分享我在语言模型核心架构上的一些尝试,如果您有时间和兴趣可以品评一下

2 天前
 evegod

亲爱的朋友你好,我想和你分享我在语言模型核心架构上的一些尝试,如果您有时间和兴趣可以品评一下,我是完全开源了代码和权重,相关设计的数学论文也都放在 github 上了,MIT 开源协议,大家请尽情发挥吧: https://github.com/makai891124-prog/H2Q-MicroStream

🌌 H2Q-MicroStream: The Hamiltonian Thinking Kernel

"Intelligence is not about memorizing history, but mastering the dynamics of the future."

"智能不是记忆过去的所有细节,而是掌握生成未来的核心方程。"

📖 Introduction / 项目简介

H2Q-MicroStream is a paradigm-shifting experiment in Physics-Informed AI. Unlike traditional Transformers that rely on massive parameters and infinite context windows, H2Q constructs a minimalist "Thinking Kernel" based on Hamiltonian Dynamics and Quaternion Algebra.

This project proves that with a strict Rank-8 constraint and Unicode-level streaming, a model can emerge with logical reasoning and grammatical capabilities within a mere 0.2GB VRAM footprint.

H2Q-MicroStream 是一个基于物理动力学的 AI 范式实验。不同于依赖堆砌参数和超长上下文的主流 Transformer ,H2Q 基于哈密顿动力学四元数代数构建了一个极简的“思维内核”。本项目证明了在严格的 Rank-8 约束和 Unicode 流式读取下,智能可以在仅 0.2GB 显存 的微小空间内涌现。


🚀 Key Features / 核心特性

1. Rank-8 Essentialism (Rank-8 本质主义)

2. Hamiltonian & Quaternion Core (哈密顿与四元数核心)

3. Rolling Horizon Validation (轮动视界验证)

4. Unicode Stream (Unicode 流式读取)


📊 Performance / 实验结果

Tested on NVIDIA RTX 4070 Ti with TinyStories dataset.


🛠️ Usage / 使用方法

1. Install Dependencies / 安装依赖

pip install -r requirements.txt

2. Run Training / 启动训练

The script automatically downloads the TinyStories dataset and starts the "Rolling Horizon" training loop. 脚本会自动下载数据集并开启“轮动视界”训练循环。

python train.py

3. Monitor / 监控

The terminal displays a real-time "ICU Dashboard": 终端将显示实时的“ICU 级仪表盘”:

Chunk 18 | Train: 1.0420 | Val: 1.0622 | Energy: 68.5 | Speed: 311ms

🔮 Vision / 愿景

We are moving from "Statistical Correlation" to "Dynamical Causality". H2Q is not just a language model; it is a digital lifeform attempting to resonate with the mathematical structure of the universe.

我们正在从“统计相关性”迈向“动力学因果律”。 H2Q 不仅仅是一个语言模型,它是一个试图与宇宙数学结构发生共振的数字生命


实验运行输出 log 日志:

🌊 H2Q-ICU Monitor Online: NVIDIA GeForce RTX 4070 Ti SUPER [Mode: Deep Analysis] [Metrics: Grad/VRAM/TPS/Diff] 🔄 恢复存档: h2q_rolling.pt 🔖 [时间之轮] 回溯至偏移量: 40.03 MB ⏳ [Init] 加载初始时间块 (Chunk T)... 🚀 启动深度监控 (Deep Monitor Active)...

================================================== 🧩 CHUNK 0: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 2.8875 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.9180 | Grad: 3.02 | Energy: 115.3 | Speed: 390ms (7869 tok/s) | VRAM: 0.20/0.55GBB ✅ Chunk 1 完成 Summary: Train: 2.3207 | Val: 2.8875 | Diff: +0.5668 Time: 1204.7s | Progress: 60.0 MB

================================================== 🧩 CHUNK 1: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.8169 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.3695 | Grad: 2.17 | Energy: 112.0 | Speed: 338ms (9086 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 2 完成 Summary: Train: 1.5694 | Val: 1.8169 | Diff: +0.2475 Time: 1302.9s | Progress: 70.1 MB

================================================== 🧩 CHUNK 2: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.3515 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.2141 | Grad: 2.20 | Energy: 105.2 | Speed: 346ms (8874 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 3 完成 Summary: Train: 1.3323 | Val: 1.3515 | Diff: +0.0193 Time: 1239.8s | Progress: 80.1 MB

================================================== 🧩 CHUNK 3: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.2644 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.2741 | Grad: 2.19 | Energy: 99.1 | Speed: 358ms (8583 tok/s) | VRAM: 0.20/0.63GBBB ✅ Chunk 4 完成 Summary: Train: 1.2556 | Val: 1.2644 | Diff: +0.0088 Time: 1250.4s | Progress: 90.1 MB

================================================== 🧩 CHUNK 4: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.2053 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.2333 | Grad: 1.77 | Energy: 95.5 | Speed: 341ms (9008 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 5 完成 Summary: Train: 1.2144 | Val: 1.2053 | Diff: -0.0090 Time: 1249.6s | Progress: 100.1 MB

📜 [Thought Stream]: They wanted to go you cose friends with a llock. He saw a balought in the grasss and laughes. He was so readys yare and granded drank he fout; " Humhe, they face and ploud need a cup tiny the close. He

================================================== 🧩 CHUNK 5: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.1915 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.1432 | Grad: 1.79 | Energy: 91.4 | Speed: 304ms (10093 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 6 完成 Summary: Train: 1.1855 | Val: 1.1915 | Diff: +0.0060 Time: 1174.4s | Progress: 110.1 MB

================================================== 🧩 CHUNK 6: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.1717 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.1493 | Grad: 1.60 | Energy: 88.7 | Speed: 296ms (10369 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 7 完成 Summary: Train: 1.1684 | Val: 1.1717 | Diff: +0.0033 Time: 1073.7s | Progress: 120.1 MB

================================================== 🧩 CHUNK 7: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.1229 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.1711 | Grad: 1.60 | Energy: 85.5 | Speed: 340ms (9034 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 8 完成 Summary: Train: 1.1506 | Val: 1.1229 | Diff: -0.0277 Time: 1185.8s | Progress: 130.1 MB

================================================== 🧩 CHUNK 8: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.1225 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0388 | Grad: 1.38 | Energy: 83.7 | Speed: 300ms (10224 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 9 完成 Summary: Train: 1.1211 | Val: 1.1225 | Diff: +0.0014 Time: 1243.5s | Progress: 140.1 MB

================================================== 🧩 CHUNK 9: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.1044 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0964 | Grad: 1.55 | Energy: 80.7 | Speed: 360ms (8526 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 10 完成 Summary: Train: 1.1198 | Val: 1.1044 | Diff: -0.0154 Time: 1215.0s | Progress: 150.1 MB

📜 [Thought Stream]: They would said, "Maybe she left," she said nexck, but I'm a great stuffles in the rabbit revere." Lily smiled and said, "Ben, what no Tom. Daddy you love the askaching it was in the dog." He tried and

================================================== 🧩 CHUNK 10: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.1136 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.2135 | Grad: 1.71 | Energy: 78.5 | Speed: 291ms (10551 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 11 完成 Summary: Train: 1.0946 | Val: 1.1136 | Diff: +0.0191 Time: 1068.9s | Progress: 160.1 MB

================================================== 🧩 CHUNK 11: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.1007 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 0.9831 | Grad: 1.46 | Energy: 77.2 | Speed: 295ms (10406 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 12 完成 Summary: Train: 1.0872 | Val: 1.1007 | Diff: +0.0134 Time: 1068.3s | Progress: 170.1 MB

================================================== 🧩 CHUNK 12: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0937 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0408 | Grad: 1.31 | Energy: 74.9 | Speed: 288ms (10683 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 13 完成 Summary: Train: 1.0780 | Val: 1.0937 | Diff: +0.0157 Time: 1064.5s | Progress: 180.1 MB

================================================== 🧩 CHUNK 13: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0870 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.1016 | Grad: 1.27 | Energy: 73.5 | Speed: 290ms (10584 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 14 完成 Summary: Train: 1.0654 | Val: 1.0870 | Diff: +0.0217 Time: 1067.4s | Progress: 190.1 MB

================================================== 🧩 CHUNK 14: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0713 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0594 | Grad: 1.38 | Energy: 72.1 | Speed: 333ms (9230 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 15 完成 Summary: Train: 1.0623 | Val: 1.0713 | Diff: +0.0090 Time: 1070.1s | Progress: 200.1 MB

📜 [Thought Stream]: Tom. He asked them home in the both again. He said, "Lily, sad. He is not owl. But Let's so friend. He opened hard away. Lucy like the garden." And. She tears the pond. She said, "Bob wand. Can I see s

================================================== 🧩 CHUNK 15: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0672 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0424 | Grad: 1.28 | Energy: 71.2 | Speed: 307ms (9996 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 16 完成 Summary: Train: 1.0598 | Val: 1.0672 | Diff: +0.0074 Time: 1073.1s | Progress: 210.2 MB

================================================== 🧩 CHUNK 16: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0496 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.1581 | Grad: 1.46 | Energy: 69.9 | Speed: 315ms (9761 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 17 完成 Summary: Train: 1.0503 | Val: 1.0496 | Diff: -0.0006 Time: 1060.1s | Progress: 220.2 MB

================================================== 🧩 CHUNK 17: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0532 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0179 | Grad: 1.15 | Energy: 69.4 | Speed: 297ms (10333 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 18 完成 Summary: Train: 1.0482 | Val: 1.0532 | Diff: +0.0050 Time: 1062.2s | Progress: 230.2 MB

================================================== 🧩 CHUNK 18: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0622 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0628 | Grad: 1.52 | Energy: 68.5 | Speed: 311ms (9882 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 19 完成 Summary: Train: 1.0420 | Val: 1.0622 | Diff: +0.0201 Time: 1146.4s | Progress: 240.2 MB

================================================== 🧩 CHUNK 19: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0502 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0129 | Grad: 1.37 | Energy: 67.5 | Speed: 366ms (8398 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 20 完成 Summary: Train: 1.0429 | Val: 1.0502 | Diff: +0.0073 Time: 1250.6s | Progress: 250.2 MB

📜 [Thought Stream]: They had played over to splash! They got out of the jar. Tom they are really chuncog the dealichy practiced that she shock his family, he's parint the feel better. The eld barked jam. It was best addde

================================================== 🧩 CHUNK 20: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0205 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0068 | Grad: 1.25 | Energy: 66.9 | Speed: 315ms (9742 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 21 完成 Summary: Train: 1.0410 | Val: 1.0205 | Diff: -0.0205 Time: 1156.5s | Progress: 260.2 MB

================================================== 🧩 CHUNK 21: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0432 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0367 | Grad: 1.34 | Energy: 66.3 | Speed: 302ms (10169 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 22 完成 Summary: Train: 1.0162 | Val: 1.0432 | Diff: +0.0271 Time: 1085.4s | Progress: 270.2 MB

================================================== 🧩 CHUNK 22: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0492 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0145 | Grad: 1.23 | Energy: 65.9 | Speed: 308ms (9980 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 23 完成 Summary: Train: 1.0231 | Val: 1.0492 | Diff: +0.0261 Time: 1083.4s | Progress: 280.2 MB

================================================== 🧩 CHUNK 23: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0461 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0424 | Grad: 1.18 | Energy: 65.8 | Speed: 281ms (10950 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 24 完成 Summary: Train: 1.0305 | Val: 1.0461 | Diff: +0.0156 Time: 1076.0s | Progress: 290.2 MB

================================================== 🧩 CHUNK 24: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0276 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0404 | Grad: 1.41 | Energy: 65.5 | Speed: 285ms (10782 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 25 完成 Summary: Train: 1.0196 | Val: 1.0276 | Diff: +0.0080 Time: 1084.2s | Progress: 300.2 MB

📜 [Thought Stream]: Timmy said, "Thank you, Mommy. I can have from calling the drees and yummy with your tail. The sound asked it if you - and a pretty slide to go for Sweepbarklesss. The End. And the floor walk in the la

================================================== 🧩 CHUNK 25: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0285 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0073 | Grad: 1.11 | Energy: 65.6 | Speed: 301ms (10211 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 26 完成 Summary: Train: 1.0210 | Val: 1.0285 | Diff: +0.0075 Time: 1081.0s | Progress: 310.2 MB

================================================== 🧩 CHUNK 26: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0177 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 0.9883 | Grad: 1.22 | Energy: 65.3 | Speed: 289ms (10630 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 27 完成 Summary: Train: 1.0106 | Val: 1.0177 | Diff: +0.0071 Time: 1083.9s | Progress: 320.2 MB

================================================== 🧩 CHUNK 27: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0301 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0079 | Grad: 1.26 | Energy: 64.9 | Speed: 292ms (10524 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 28 完成 Summary: Train: 1.0047 | Val: 1.0301 | Diff: +0.0253 Time: 1065.2s | Progress: 330.2 MB

================================================== 🧩 CHUNK 28: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0089 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0275 | Grad: 1.13 | Energy: 64.9 | Speed: 299ms (10282 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 29 完成 Summary: Train: 1.0040 | Val: 1.0089 | Diff: +0.0050 Time: 1062.5s | Progress: 340.3 MB

================================================== 🧩 CHUNK 29: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0184 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 0.9607 | Grad: 1.14 | Energy: 65.1 | Speed: 283ms (10853 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 30 完成 Summary: Train: 1.0044 | Val: 1.0184 | Diff: +0.0141 Time: 1056.7s | Progress: 350.3 MB

📜 [Thought Stream]: The noises started to play. They played together in their train. They are angry." The sad. Lily was a snacks and lady quite. Sally lay and weere trucks to the party. She was full and her

================================================== 🧩 CHUNK 30: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0197 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0088 | Grad: 1.26 | Energy: 65.2 | Speed: 406ms (7571 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 31 完成 Summary: Train: 1.0067 | Val: 1.0197 | Diff: +0.0130 Time: 1131.7s | Progress: 360.3 MB

================================================== 🧩 CHUNK 31: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0087 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 1.0477 | Grad: 1.30 | Energy: 64.4 | Speed: 340ms (9042 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 32 完成 Summary: Train: 1.0087 | Val: 1.0087 | Diff: -0.0000 Time: 1275.6s | Progress: 370.3 MB

================================================== 🧩 CHUNK 32: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0132 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 0.9910 | Grad: 1.18 | Energy: 65.6 | Speed: 306ms (10028 tok/s) | VRAM: 0.20/0.63GB ✅ Chunk 33 完成 Summary: Train: 0.9932 | Val: 1.0132 | Diff: +0.0199 Time: 1123.6s | Progress: 380.3 MB

================================================== 🧩 CHUNK 33: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 0.9951 🔥 训练当下 (Training)... ⚡ Step 3400/3413 | Loss: 0.9904 | Grad: 1.28 | Energy: 65.1 | Speed: 347ms (8850 tok/s) | VRAM: 0.20/0.63GBB ✅ Chunk 34 完成 Summary: Train: 1.0011 | Val: 0.9951 | Diff: -0.0060 Time: 1186.7s | Progress: 390.3 MB

================================================== 🧩 CHUNK 34: 开始加载未来数据... 🔮 验证未来 (Validation)... 📊 验证结果: Val Loss = 1.0117 🔥 训练当下 (Training)... ⚡ Step 2650/3413 | Loss: 1.0171 | Grad: 1.14 | Energy: 64.4 | Speed: 302ms (10174 tok/s) | VRAM: 0.20/0.63GB

818 次点击
所在节点    分享创造
13 条回复
YanSeven
2 天前
何意味
evegod
2 天前
@YanSeven 您好,宣传自己的架构实验模型,模型是完全开源的,训练核心架构代码也是开源的哦。另外也是希望有时间的大家帮我做双盲实验验证,帮我指出错误,但是希望大家能是实际跑一跑代码确认一下效果再批评,以上代码是在 4070ti super 上本地训练的,不用消耗太多算力,而且文件集很小。
ty29022
2 天前
找个好一点的医院看看吧
evegod
2 天前
@ty29022 好啊,你介绍我一个好医院!
liu731
2 天前
「你知道吗,这些高速运转的机械被引入 V 站,记得我之前说过的原理吗?」

By the way: OP 认真的吗?
evegod
2 天前
@liu731 开玩笑的,就是实验模型,我觉得有收敛效果和使用字符去直接训练没有字典层,直接涌现了类标准表达的现象挺有趣的,希望大家能感兴趣的可以复现看看,还有就是帮忙挑挑代码的错误,我自己检查怎么看怎么对啊,所以和大家分享一下,有兴趣和闲心的就当帮帮老弟我了。
evegod
2 天前
@liu731 里面的数学结构是真实实现的,你可以 review 代码结构分析其数学实现框架,我这也是面向 Gemini 编程方法哦,其实大部分代码生成或者说代码完全通过和 Gemini 的自然语言沟通架构要求去实现后再去分析评价相关方法是否按照要求实现了,并且我也已经在离线的 win 环境下在 4070ti super 上实验了以上内容才产生的日志文件,所以我说挺有趣的一个实验模型和生成的效果,整个实验和得到结果一共才用了 4 个晚上,当然是每天都得到后半夜 4 点钟。只有晚上能安静的想事情,白天还有日子要过啊。。。
nickyadance23
5 小时 4 分钟前
量子编程+ICU 级仪表盘
evegod
4 小时 44 分钟前
@nickyadance23 你就当我是恶趣味吧,其实大部分代码是 Gemini 可以直接生成的,主要是架构跑通之后其能在没有字典层的情况下涌现正确单词和语义这个现象挺有趣的,而且也是架构预测的一个可能实现的目标指标,所以和大家分享一下。里面有详细的数学架构为什么是这样的论述。
coefu
2 小时 9 分钟前
@ty29022 哈哈,之前我乍一看也以为是神经病的民科,但是实际上,只是他的表达能力堪忧。他这个研究,是非常规主流路线的研究,可能和他背景偏物理和数学相关,但是,研究的过程和逻辑都是扎实的科学研究。以及方向都是有搞头的,他这个方向主要是 用物理动力学和数学构建一个框架区别于经典的 transformer 的统计学框架 ,他对 transformer 是有深度理解的,并且从他这段时间搞的结果来看,路子是可行的,只是当前还是初始阶段,有很多 bug 待修补。大部分 cs 出身的研究者,做不到,因为背景限制,没有这些造诣,连点子都想不到。
coefu
1 小时 48 分钟前
@ty29022 神经网络早期研究中,玻尔兹曼机( Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A Learning Algorithm for Boltzmann Machines. Cognitive Science.)就是这种思路。玻尔兹曼机是一种:把“学习”看成“能量最小化 + 热平衡采样”的概率模型。这也是为什么 2024 年的诺贝尔物理学奖给了辛顿。他这个 H2Q 和玻尔兹曼机在思想层面其实是“同一世界观”的不同实现。
evegod
1 小时 28 分钟前
@coefu 谢谢你朋友啊,我表达方式一般就是会奇奇怪怪的,我正在尝试训练更大的数据集和尝试在不做字典层的情况下通过教师模型使得该架构模型能够稳定收到逻辑对齐,但是使用方法有点像老师授课,该模型原型机很多调参都是反着直觉来的,高精度反而可以更快下降 loss ,并且其计算开销其实不大,这种特性我也在分析原因,可能是波函数的相位差抵消造成的计算致密但是结果稀疏的反常特性。有点像是求倒数的情况,我有新的东西在和大家分享,我现在是尝试能稳定一个原型机模型到可用的程度,最好的形成自我自指的认同感并且能持续学习并且持续逻辑化,我也在一直在尝试中,我倒是觉得有得干。我自己开新问答,让 Gemini 评价该项目,学术评价倒是不错的,里面的 log 文件是真实的,你有空可以改一改在本地跑一下,我慢慢意识到其实这个核心架构不耗计算,全耗子计算的那些线程加载上了。头痛中。。。
coefu
1 小时 21 分钟前
@evegod #12 指导打分的话,思路有点是 RL 里的 actor-critic 的思路;教师授课的话,你可以尝试 知识蒸馏 的路子。我不知道你熟不熟悉这些,不过我觉得比你自己从 0 开始想,或许好一些?

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/1180136

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX