企业级部署实操: SGLang 多节点集群部署 Qwen 系列大模型

150 天前
 suke119

目标

比起Ollama的方便,有些时候高并发更重要,因此这篇文章将实现在两台电脑(双节点)上部署 SGLang(当然如果你还有多余的也可以加进来当节点),运行 Qwen2.5-7B-Instruct 模型,实现本地资源的充分利用。

硬件

模型

Qwen2.5-7B-Instruct,FP16 下约需 14GB 显存,使用 --tp 2 后每 GPU 约 7GB (权重)+ 2-3GB ( KV 缓存)。

网络

两节点通过以太网( TCP )通信,网络接口为 eno1 。

这里根据自己电脑 ip addr 查询即可

不量化

使用 FP16 精度以保留最大精度,显存占用较高,需优化配置。

2. 前置条件

在开始安装和部署之前,确保以下条件满足:

操作系统

网络连通性

ping 192.168.0.12  # 从节点 1
ping 192.168.0.13  # 从节点 0

sudo ufw allow 50000
sudo ufw allow 30000

# 具体网卡根据实际调整
ip addr show eno1 

eno1 不存在,替换为实际接口(如 eth0enp0s3)。

GPU 驱动和 CUDA

nvidia-smi  # 确认驱动和 CUDA 版本

输出应显示 英伟达和 CUDA 版本(如 12.4 )。

若未安装,参考 NVIDIA 官网 自行安装即可:

Python 环境

python3 --version

磁盘空间

3. 安装 SGLang

在两节点上分别安装 SGLang 和依赖。以下步骤在每台电脑上执行。

3.1 创建虚拟环境(conda)

conda create -n sglang_env python=3.10
conda activate  sglang_env

3.2 安装 SGLang

备注: 安装过程会自动安装 对应显卡相关的依赖,如 torchtransformersflashinfer

pip install --upgrade pip
pip install uv
uv pip install "sglang[all]>=0.4.5" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python

验证安装:

python -m sglang.launch_server --help

应显示 SGLang 的命令行参数帮助信息。

3.3 下载 Qwen2.5-7B-Instruct 模型

国外使用 huggingface,国内使用 modelscope

在两节点上下载模型到相同路径(如 /opt/models/Qwen/Qwen2.5-7B-Instruct):

pip install modelscope
modelscope download Qwen/Qwen2.5-7B-Instruct --local-dir /opt/models/Qwen/Qwen2.5-7B-Instruct

或手动从 Hugging Face 或者 modelscope 下载并解压到指定路径。确保两节点模型文件一致。

4. 配置双节点部署

使用张量并行(--tp 2 )将模型分布到 2 个 GPU (每节点 1 个)。以下是详细的部署步骤和命令。

4.1 部署命令

NCCL_IB_DISABLE=1 NCCL_P2P_DISABLE=1 GLOO_SOCKET_IFNAME=eno1 NCCL_SOCKET_IFNAME=eno1 python3 -m sglang.launch_server \
  --model-path /opt/models/Qwen/Qwen2.5-7B-Instruct \
  --tp 2 \
  --nnodes 2 \
  --node-rank 0 \
  --dist-init-addr 192.168.0.12:50000 \
  --disable-cuda-graph \
  --host 0.0.0.0 \
  --port 30000 \
  --mem-fraction-static 0.7
NCCL_IB_DISABLE=1 NCCL_P2P_DISABLE=1 GLOO_SOCKET_IFNAME=eno1 NCCL_SOCKET_IFNAME=eno1 python3 -m sglang.launch_server \
  --model-path /opt/models/Qwen/Qwen2.5-7B-Instruct \
  --tp 2 \
  --nnodes 2 \
  --node-rank 1 \
  --dist-init-addr 192.168.0.12:50000 \
  --disable-cuda-graph \
  --host 0.0.0.0 \
  --port 30000 \
  --mem-fraction-static 0.7

注意: 如果出现 OOM 的情况则调整 --mem-fraction-static 参数,默认是 0.9 ,改为 0.7 即可。0.9 调整到 0.7 时 当前 7B 模型 占用显存直接下降 2G 左右。 CUDA Graph 会额外分配少量显存(通常几百 MB )来存储计算图。如果显存接近上限,启用 CUDA Graph 可能触发 OOM 错误。

完整全文

更多参数细节原文见

2347 次点击
所在节点    程序员
21 条回复
kenshin912
150 天前
你这个光口的网络通信会成为性能瓶颈吗 ?
我们目前是运行了 2 个 vLLM 分别指定 GPU 0 和 GPU 1

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/1126368

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX