在被股市一顿暴打后,研究了下如何用深度强化学习自动炒股 ~

2020-03-28 10:40:02 +08:00
 easternslope

📈 如何用深度强化学习自动炒股

💡 初衷

最近一段时间,受到新冠疫情的影响,股市接连下跌,作为一棵小白菜兼小韭菜,竟然产生了抄底的大胆想法,拿出仅存的一点私房钱梭哈了一把。

第二天,暴跌,俺加仓

第三天,又跌,俺加仓

第三天,又跌,俺又加仓...

一番错误操作后,结果惨不忍睹,第一次买股票就被股市一段暴打,受到了媳妇无情的嘲讽。痛定思痛,俺决定换一个思路:如何用深度强化学习来自动模拟炒股? 实验验证一下能否获得收益。

📖 监督学习与强化学习的区别

监督学习(如 LSTM )可以根据各种历史数据来预测未来的股票的价格,判断股票是涨还是跌,帮助人做决策。

而强化学习是机器学习的另一个分支,在决策的时候采取合适的行动 (Action) 使最后的奖励最大化。与监督学习预测未来的数值不同,强化学习根据输入的状态(如当日开盘价、收盘价等),输出系列动作(例如:买进、持有、卖出),使得最后的收益最大化,实现自动交易。

🤖 OpenAI Gym 股票交易环境

观测 Observation

策略网络观测的就是一只股票的各项参数,比如开盘价、收盘价、成交数量等。部分数值会是一个很大的数值,比如成交金额或者成交量,有可能百万、千万乃至更大,为了训练时网络收敛,观测的状态数据输入时,必须要进行归一化,变换到 [-1, 1] 的区间内。

动作 Action

假设交易共有买入卖出保持 3 种操作,定义动作(action)为长度为 2 的数组

  • action[0] 为操作类型;
  • action[1] 表示买入或卖出百分比;

注意,当动作类型 action[0] = 3 时,表示不买也不抛售股票,此时 action[1] 的值无实际意义,网络在训练过程中,Agent 会慢慢学习到这一信息。

奖励 Reward

奖励函数的设计,对强化学习的目标至关重要。在股票交易的环境下,最应该关心的就是当前的盈利情况,故用当前的利润作为奖励函数。即当前本金 + 股票价值 - 初始本金 = 利润

# profits
reward = self.net_worth - INITIAL_ACCOUNT_BALANCE
reward = 1 if reward > 0 else reward = -100

为了使网络更快学习到盈利的策略,当利润为负值时,给予网络一个较大的惩罚 (-100)。

策略梯度

因为动作输出的数值是连续,因此使用基于策略梯度的优化算法,其中比较知名的是 PPO 算法,OpenAI 和许多文献已把 PPO 作为强化学习研究中首选的算法。PPO 优化算法 Python 实现参考 stable-baselines

🕵️‍♀️ 模拟实验

环境安装

# 虚拟环境
virtualenv -p python3.6 venv
source ./venv/bin/activate
# 安装库依赖
pip install -r requirements.txt

股票数据获取

股票证券数据集来自于 baostock,一个免费、开源的证券数据平台,提供 Python API 。

>> pip install baostock -i https://pypi.tuna.tsinghua.edu.cn/simple/ --trusted-host pypi.tuna.tsinghua.edu.cn

数据获取代码参考 get_stock_data.py

>> python get_stock_data.py

将过去 20 多年的股票数据划分为训练集,和末尾 1 个月数据作为测试集,来验证强化学习策略的有效性。划分如下

| 1990-01-01 ~ 2019-11-29 | 2019-12-01 ~ 2019-12-31 | |---|---| | 训练集 | 测试集 |

验证结果

单只股票

  • 初始本金 10000
  • 股票代码:sh.600036(招商银行)
  • 训练集: stockdata/train/sh.600036.招商银行.csv
  • 测试集: stockdata/test/sh.600036.招商银行.csv
  • 模拟操作 20 天,最终盈利约 400

多只股票

选取 1002 只股票,进行训练,共计

  • 盈利: 44.5%
  • 不亏不赚: 46.5%
  • 亏损:9.0%

👻 最后

  • 股票 Gym 环境主要参考 Stock-Trading-Environment,对观测状态、奖励函数和训练集做了修改。
  • 俺完全是股票没入门的新手,难免存在错误,欢迎指正!
  • 数据和方法皆来源于网络,无法保证有效性,Just For Fun

📚 参考资料

项目地址

Github 源码地址: https://github.com/wangshub/RL-Stock

24796 次点击
所在节点    程序员
160 条回复
lloovve
2020-03-28 12:16:36 +08:00
牛逼,可以用在 btc 上
AlohaV2
2020-03-28 12:18:25 +08:00
action 可以细化一下,变成一个-1 到 1 之间的卖出买入信号
rockyou
2020-03-28 12:19:46 +08:00
过拟合
Kamen27
2020-03-28 12:20:52 +08:00
@locoz 肯定有机会啊,只要主力大部分资金处于亏损状态,就一定有得赚。
delectate
2020-03-28 12:21:10 +08:00
@GreyYang 有没有想过,一键亏钱系统,能改动一下,反向操作。你多我空 你空我多
____________________________________

@barrelsoil 《散户靠自己分析 90%都亏钱,那如果我每次都反着买,会长期盈利吗?》 https://daily.zhihu.com/story/7778019?utm_camp
答案是,不能。
hoyixi
2020-03-28 12:21:45 +08:00
玩股票有两种, 一种是类似庄家,你的公司之类发行股票,你可以各种玩,各种收割;
一种是只买股票,说真的,这种,个人认为,纯跟大势罢了,大势是牛市,涨,你就赚,很多人这时候就飘了,以为自己是股神,是技术大拿,是财经奇才,有金融天赋;然而,大势熊,跌,现原形,不过这时候大多数”股神“还是无法醒悟。
renothing
2020-03-28 12:24:19 +08:00
自从上了量化交易,然后你就会发现涨跌都会赔钱了。
alphatoad
2020-03-28 12:30:56 +08:00
这个用 LSTM 真的不会 garbage in garbage out 吗?
wangleineo
2020-03-28 12:31:02 +08:00
可以再做个随机数版的,比比效果。
我猜随机数效果更好。
alpha2016
2020-03-28 12:32:56 +08:00
股市:一定不辜负你的,我们就需要你这样的人捧场
Cytion
2020-03-28 12:38:45 +08:00
全自动倾家荡产
Gcourage
2020-03-28 12:41:57 +08:00
像我们喜欢科技的,买纳斯达克 100 就好了吧
DAMNYOU
2020-03-28 12:47:21 +08:00
2015 年股灾之前有人就在吹量化交易,然鹅股灾一来,管你阿猫阿狗全部带走
wanguorui123
2020-03-28 12:48:55 +08:00
深度学习 炒股
hahaayaoyaoyao
2020-03-28 12:48:59 +08:00
@ybw 而且别人拿的是镰刀
Norie
2020-03-28 12:54:04 +08:00
精装韭菜?
csunny
2020-03-28 12:56:03 +08:00
直接把数据扔进模型,基本上死的很快。金融数据是噪音远远大于信号的,不像现在机器学习面对的那些数据。garbage in , garbage out
imkerberos
2020-03-28 12:58:51 +08:00
我发现很多业余做自动化交易的喜欢拿数据来模拟,而且模拟过程中居然没有模拟想卖卖不出,想买买不到的情况,也真是自信。
raymanr
2020-03-28 12:59:20 +08:00
@delectate 这种我没研究过, 但是类似的问题我研究过, 就是两个学渣考试, 一个学渣如果知道了另一个学渣的答案后去掉这些答案能否提升自己蒙中正确答案的可能? 当然最后结果还是不能.
raymanr
2020-03-28 13:00:54 +08:00
@wangleineo 如果拿历史数据做检验多半会过拟合, 收益惊人, 然后实盘亏得一塌糊涂

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/657014

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX