m1 有原生 numpy scipy 了

2020-12-09 15:37:56 +08:00
 YUX

https://github.com/conda-forge/miniforge

先下载对应版本的 Miniforge3, ====> OS X arm64 (Apple Silicon)

装上之后就有 conda 了,conda 里面装 numpy,scipy 什么的都是原生的

性能提升很大 无论对比 Rosetta 2 还是 intel i9

8303 次点击
所在节点    macOS
42 条回复
YUX
2021-01-24 20:05:33 +08:00
补充一个树莓派的😂

Dotted two 4096x4096 matrices in 10.18 s.
Dotted two vectors of length 524288 in 2.27 ms.
SVD of a 2048x1024 matrix in 6.67 s.
Cholesky decomposition of a 2048x2048 matrix in 0.85 s.
Eigendecomposition of a 2048x2048 matrix in 37.83 s.

This was obtained using the following Numpy configuration:
blas_info:
libraries = ['cblas', 'blas', 'cblas', 'blas']
library_dirs = ['/root/mambaforge/envs/maths/lib']
include_dirs = ['/root/mambaforge/envs/maths/include']
language = c
define_macros = [('HAVE_CBLAS', None)]
blas_opt_info:
define_macros = [('NO_ATLAS_INFO', 1), ('HAVE_CBLAS', None)]
libraries = ['cblas', 'blas', 'cblas', 'blas']
library_dirs = ['/root/mambaforge/envs/maths/lib']
include_dirs = ['/root/mambaforge/envs/maths/include']
language = c
lapack_info:
libraries = ['lapack', 'blas', 'lapack', 'blas']
library_dirs = ['/root/mambaforge/envs/maths/lib']
language = f77
lapack_opt_info:
libraries = ['lapack', 'blas', 'lapack', 'blas', 'cblas', 'blas', 'cblas', 'blas']
library_dirs = ['/root/mambaforge/envs/maths/lib']
language = c
define_macros = [('NO_ATLAS_INFO', 1), ('HAVE_CBLAS', None)]
include_dirs = ['/root/mambaforge/envs/maths/include']
YRInc
2021-04-23 04:02:49 +08:00
提供一个国产的给大家参考:鲲鹏 920

12 核 鲲鹏 920 24G 内存:
-------------------
Python 3.8.8 | packaged by conda-forge | (default, Feb 20 2021, 15:45:16)

Dotted two 4096x4096 matrices in 1.48 s.
Dotted two vectors of length 524288 in 0.49 ms.
SVD of a 2048x1024 matrix in 1.10 s.
Cholesky decomposition of a 2048x2048 matrix in 0.14 s.
Eigendecomposition of a 2048x2048 matrix in 8.36 s.
-------------------


24 核 鲲鹏 920 48G 内存:
-------------------
Dotted two 4096x4096 matrices in 0.76 s.
Dotted two vectors of length 524288 in 0.48 ms.
SVD of a 2048x1024 matrix in 0.93 s.
Cholesky decomposition of a 2048x2048 matrix in 0.13 s.
Eigendecomposition of a 2048x2048 matrix in 7.66 s.


与 M1 Mac 用的同样的环境,Miniforge3,相关的加速库如下:
blas_info:
libraries = ['cblas', 'blas', 'cblas', 'blas']
library_dirs = ['/root/miniforge3/lib']
include_dirs = ['/root/miniforge3/include']
language = c
define_macros = [('HAVE_CBLAS', None)]
blas_opt_info:
define_macros = [('NO_ATLAS_INFO', 1), ('HAVE_CBLAS', None)]
libraries = ['cblas', 'blas', 'cblas', 'blas']
library_dirs = ['/root/miniforge3/lib']
include_dirs = ['/root/miniforge3/include']
language = c
lapack_info:
libraries = ['lapack', 'blas', 'lapack', 'blas']
library_dirs = ['/root/miniforge3/lib']
language = f77
lapack_opt_info:
libraries = ['lapack', 'blas', 'lapack', 'blas', 'cblas', 'blas', 'cblas', 'blas']
library_dirs = ['/root/miniforge3/lib']
language = c
define_macros = [('NO_ATLAS_INFO', 1), ('HAVE_CBLAS', None)]
include_dirs = ['/root/miniforge3/include']

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/733777

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX